

1 Hueman: Personalized Color-Forward Emotion Tracking and Adaptive Mobile 2 Interfaces for Reflection and Regulation 3

4 ANONYMOUS AUTHOR(S)
5

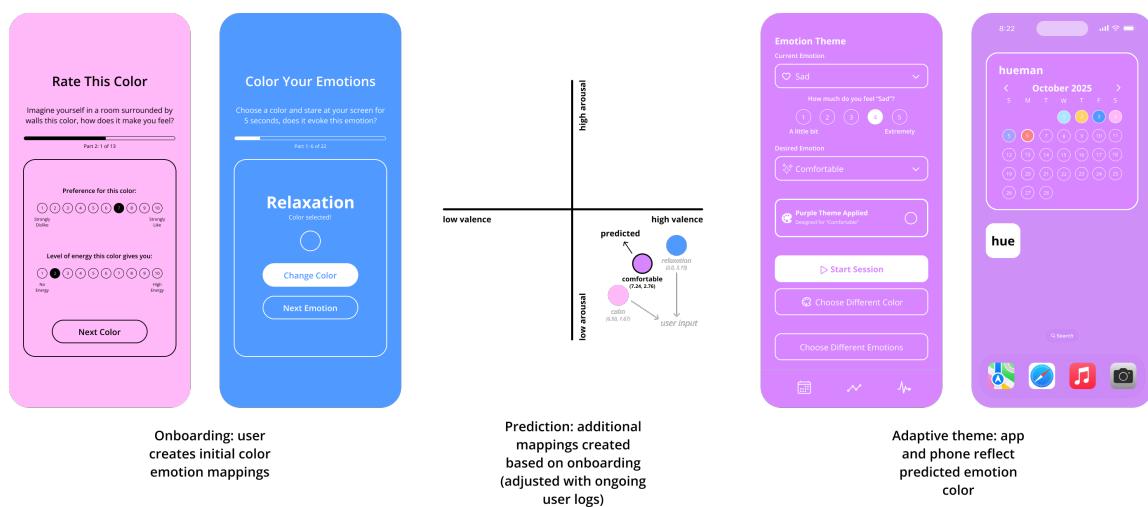


Fig. 1. Hueman is a color-forward emotion tracking and management system that learns from each user's unique color-emotion associations. Hueman creates initial color-emotion mappings (middle) from an onboarding survey (left). These mappings can be used for emotion management through adaptive mobile interfaces (right).

Emotional awareness and reflection through self-tracking can support mental well-being. Personal Informatics (PI) systems enable this practice through various methods and mediums of emotional expression. Existing emotion-tracking systems offer limited opportunities for personalization or adaptive support. In particular, color-integrated systems often either impose predefined color-emotion mappings that conflict with users' personal, cultural, or contextual associations or place the burden of defining these mappings entirely on the user. This makes it difficult for users to establish meaningful associations that evolve with their personal experience. To address this gap, we developed Hueman, a color-forward emotion tracking and management system that learns from each user's unique color-emotion associations. We use Hueman as a technology probe to explore how users engage with color-forward tracking as a medium of expression and how Adaptive User Interfaces (AUIs) can support emotional adjustment. Drawing on data from the onboarding survey and ongoing color logs, Hueman infers emotional states from the users' color selections and adapts mobile user interface (UI) themes to prompt emotional regulation. A weeklong evaluation with seven participants showed that Hueman can support meaningful emotional reflection and regulation, helping users question and refine their own color-emotion associations while enhancing engagement with self-tracking. This work contributes a novel design space for color-based personalization in PI and demonstrates the potential of AUIs for fostering emotional awareness and adjustment.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Manuscript submitted to ACM

Manuscript submitted to ACM

53 CCS Concepts: • **Human-centered computing** → **User interface design**; **Visualization design and evaluation methods**; • **Computing**
54 **methodologies** → **Affective computing**; • **Applied computing** → **Fine arts**.
55

56 Additional Key Words and Phrases: Personal informatics, Affective computing, Adaptive user interfaces, Human-centered computing
57

58 **ACM Reference Format:**

59 Anonymous Author(s). 2025. Hueman: Personalized Color-Forward Emotion Tracking and Adaptive Mobile Interfaces for Reflection
60 and Regulation. In *Proceedings of March 23-26, 2026 (IUI '26)*. ACM, New York, NY, USA, 24 pages. <https://doi.org/XXXXXX.XXXXXXX>
61

62 **1 Introduction**

63 People are highly emotional beings, yet the ability to recognize, regulate, understand, and express emotions does not
64 come naturally to many [56]. Individuals often struggle to articulate their feelings or even identify what they are feeling
65 in the first place. However, emotional awareness plays an important role in our lives and may be an important factor in
66 predicting life outcomes [56]. Personal informatics systems aim to address these challenges by helping individuals collect
67 and reflect on personally relevant information to gain self-knowledge [48]. Prior work has shown that engaging in
68 practices of emotional regulation and self reflection can improve happiness, enhance self-understanding, and contribute
69 to overall quality of life [13]. Social and cultural trends have also emerged around personal informatics and emotion
70 tracking. For example, the Quantified Self [77] movement, where users participate in lifelogging, and Year in Pixels [34],
71 a technique where users color in a square on a calendar associated with their current mood for that day.
72

73 Color, specifically, offers a compelling medium for emotional expression and self-reflection as it is associated with
74 affective experience and can communicate nuanced emotional states [22, 73]. However, existing color-integrated
75 systems impose fixed color-emotion mappings, such as red for anger and blue for sadness, which may not align with
76 individual preferences and experiences [72]. Other systems will give complete freedom to the user in creating defined
77 color-emotion associations [6, 9]. It is difficult for users to create their own fixed definitions as they may not understand
78 their own relationships with color, and their preferences are always evolving [9]. By learning and adapting with each
79 user's dynamic associations between colors and emotions, systems can provide a more personalized and meaningful
80 tracking experience. Such an approach could not only support reflective practices, but also enable adaptive interventions
81 for in-the-moment emotional regulation, creating a design space that combines self-expression and personalization.
82

83 Adaptive user interfaces [12] offer a promising method for supporting personalized emotional experiences through
84 dynamically responding to a user's current state. In contrast to static designs, AUIs can adjust visual elements such
85 as color to align with individual preferences and contextual needs. Prior work has explored how adaptive interfaces
86 can influence users' moods and evoke emotional reactions through changes in color themes [4, 42]. Applying these
87 principles to emotion-tracking systems could allow interfaces to not only reflect a user's emotional state, but also guide
88 and support emotional regulation in real time. By integrating color-based personalization, AUIs have the potential to
89 create more engaging and impactful tools.
90

91 Considering these points, we developed Hueman, a mobile application for color-based emotion logging, reflection,
92 and adaptation that combines personalized user color-emotion associations with adaptive mobile interfaces. During
93 onboarding, users complete a two-part mapping process: first, they select colors corresponding to specific emotions,
94 and second, they reverse-map by choosing an emotion associated with a given color (Figure 1). Hueman then constructs
95 a customized color-emotion mapping across a broad range of emotions. Emotional states are quantified along the
96 Valence-Arousal (VA) spectrum (Figure 5). In using the app, users can log their current emotion for a specific date and
97

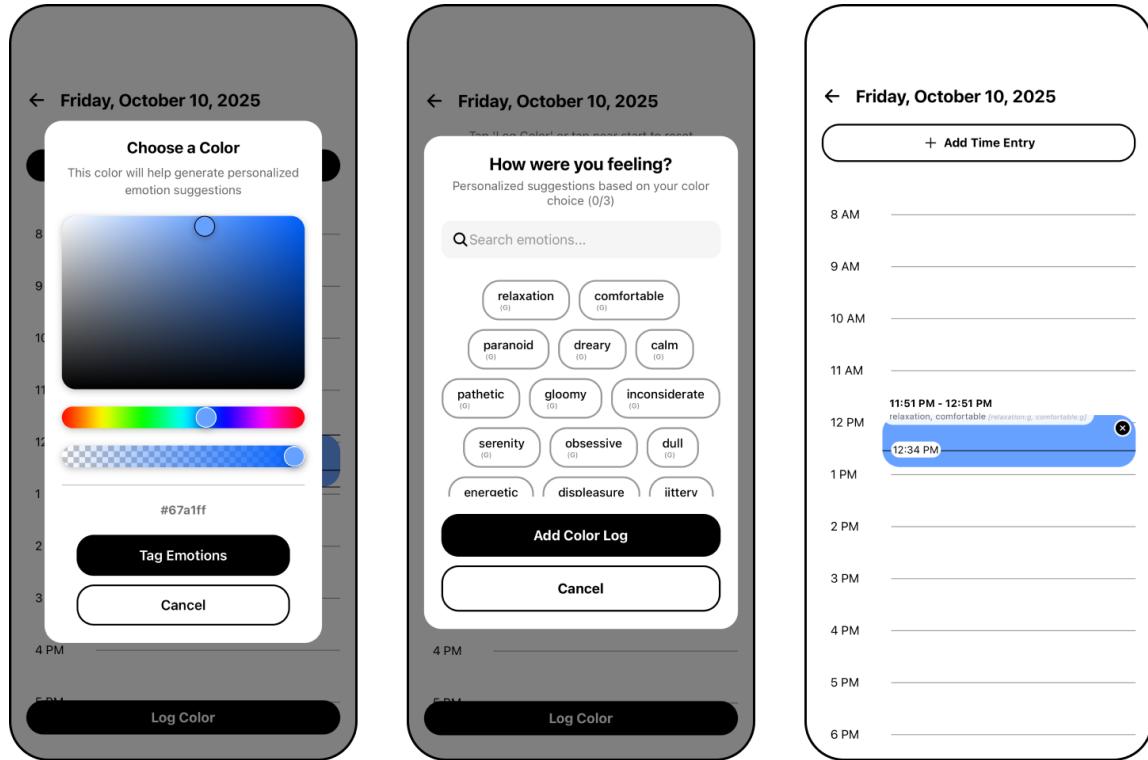


Fig. 2. Color-based emotion logging in Hueman: (1) users select the current date and a time range; (2) choose a color that represents their current feeling; and (3) select from system-generated, personalized candidate emotion labels.

time range by selecting a corresponding color. The system generates candidate emotion labels based on the user's onboarding logs and past entries, from which users can select to tag their entries (Figure 2).

Hueman supports reflective practices through simple, easily understandable visualizations, including color-to-emotion and emotion-to-color mappings, as well as summaries of top emotions experienced over a given period. Beyond reflection, Hueman facilitates adaptive emotion regulation: users can specify their current emotion and desired emotional state, the system then adjusts the app's color theme to support mood shifts through color-based interventions (Figure 1). The system also adjusts the user's mobile color theme through the application widget and background wallpaper. This is done through automated email notifications that trigger shortcuts in iOS devices. Hueman occupies a space between adaptive and adaptable interfaces. While it automatically adjusts the interface to support emotional regulation (adaptive), it also allows users to actively select their desired emotional outcomes and influence the system's color interventions (adaptable) [27].

Hueman is user-driven, enabling individuals to initiate features and adjustments according to their own preferences. Whether in emotion tagging or adaptive interface, the user maintains autonomy as the app provides options for manual input or changes after presenting the user with the system's recommendations [61]. In addition to the generated emotions that Hueman recommends, the user can self-select emotions from the larger database through a text-based search query. In adapting color themes, the system first allows the user to preview the recommended color for the their

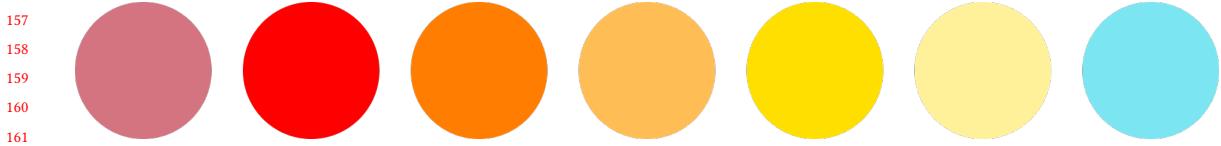


Fig. 3. Seven shades of "happiness" which participants indicated in the evaluation of Hueman.

165 desired emotional state. The user is then able to make adjustments to the color if they require increased customization.
 166 Manual user inputs and adjustments are tracked and used to better train the user's personalized color-emotion mappings
 167 (Figure 4).
 168

169 This paper evaluates the use of color as a medium for emotional expression and user experiences with color-based
 170 AUIs for emotional adjustment through a weeklong deployment with seven participants. In the evaluation of Hueman,
 171 we not only wanted to collect quantitative and qualitative insights about the design of the application, but also use it as
 172 a technology probe to provide insights for future HCI research regarding color as a dynamic medium of emotional
 173 expression and management. Our research questions are: (1) how personalized color-emotion mappings can support
 174 users in reflecting on their emotional states, (2) how color-based adaptive interfaces can facilitate emotional regulation,
 175 and (3) how predictive emotion systems can enhance users' awareness of their emotional patterns and states. Our
 176 results demonstrate that Hueman can support meaningful emotional reflection and regulation.
 177

178 Our contributions are as follows:

- 180 • We developed Hueman, a mobile application that personalizes color-emotion mappings, predicts user emotions
 181 from color input, and dynamically adapts the interface and the user's mobile device to support emotional
 182 regulation.
- 183 • We validate Hueman's effectiveness and potential in emotional adaptation and reflection through a user study.
- 184 • We provide insights into how users interact with personalized color-based emotional tracking and adaptive
 185 interfaces for emotion logging, self-reflection, and emotional management.

188 2 Related Work

189 2.1 Personal Informatics for Emotional Well-Being

190 Within personal informatics, there has been continued development of new methods for expression and tracking to help
 191 people collect, reflect on, and manage their lives. Li et al. define PI systems as "those that help people collect personally
 192 relevant information for the purpose of self-reflection and gaining self-knowledge" [48]. This research further defined
 193 five stages of PI systems: preparation, collection, integration, reflection, and action. PI systems that support emotional
 194 insights approach these five stages through different methods. One notable way existing systems diverge is through
 195 types of data collection and system integration, or the method used to collect that data. The type of data used for
 196 indicating emotions can be derived from physiological or behavioral indicators such as heart rate, screen usage, or eye
 197 tracking [38, 51]. Data could also be sourced from users' own mental constructs of emotion, whether from an artistic
 198 expression of their emotion or selection of emotion to log how they are feeling [9, 45]. In the collection of data, we see
 199 automated tracking where systems automatically collect data to interpret and define users' emotional states [38, 53].
 200 Other systems rely on user input for defined emotional states [6, 9, 45]. Methods of data collection and types of data
 201 collected within systems are not mutually exclusive and often intersect to support multi-dimensional emotion tracking
 202 for users.
 203

209 We often see automated tracking approaches combined with physical and behavioral indicators. MindScope is an
 210 example of this, where researchers tracked users' screen use, physical activity, location, social context, and physiological
 211 indicators for stress prediction [38]. We see something similar in the increasingly popular Oura ring, a ring which
 212 can collect health metrics and insights, including stress monitoring and management from tracking biometrics [53].
 213 Methods that rely on physiological indicators of emotion are limited in type of emotion identification, as many emotions
 214 cannot be inferred solely from physical conditions. However, other modalities such as facial tracking, vocal tone, and
 215 smartphone interaction metrics enable more multi-dimensional understanding of user emotions [59, 70, 81].
 216

217 A different approach involves manual emotion tracking based on users' mental indicators. In these systems, users
 218 manually log their experiences through translating their internal state into a text-based emotion [72] or a method
 219 of expression [6, 9, 45]. Manual self-tracking systems help the user remain grounded within their own emotions and
 220 logging [1]. It allows for reflection-in-action [69] through recognizing and recording their emotions in the moment [9].
 221 MindTracker, for example, enables users to model their emotions using clay figures and photograph them as a record,
 222 supporting emotional expression through tangible, artistic means [45]. Similarly, Chromatize provides a low-burden,
 223 in-the-moment color-based logging experience, allowing users to select colors that represent their emotions and
 224 optionally add contextual notes [9]. These systems tend to reflect aspects of analog forms of mood tracking, such as
 225 journaling or drawing [52].
 226

227 Manual tracking with mental indicators are especially valuable because they preserve the user's agency in defining
 228 and interpreting their own emotional states, rather than relying solely on algorithmic inference or biometric data [1].
 229 These systems recognize that emotions are not always physiologically legible, and that the act of logging, whether
 230 through words, colors, or tangible artifacts, can itself serve as a reflective and grounding process [1, 6, 7]. By prioritizing
 231 user expression, manual tracking enables individuals to build a personal vocabulary for emotions that may differ from
 232 cultural norms or standardized models.
 233

234 Prior research highlights the value of flexible manual data entry as a meaning-making practice, showing that
 235 low-burden experience logging systems that generate symbolically-rich, self-defined data can support self-awareness,
 236 reflection, and regulation [9, 17, 24]. Prior work also shows that physical manual tracking, despite its benefits, risks
 237 abandonment because of the burden of repeated and high-effort input, which may be difficult to maintain or develop
 238 summarized insights from [1, 29]. This tension motivates the design of Hueman, which seeks to maintain the convenience
 239 of lightweight digital interaction while using personalized features to provide valuable insights to the users. Hueman
 240 focuses on color as a medium for emotion logging and reflection. It supports users in articulating their unique, personally
 241 meaningful associations between color and feeling. In doing so, it both empowers users to construct emotional self-
 242 knowledge and changes their relationship with this medium. Hueman can refine what colors mean to users, help them
 243 reject common associative definitions, and develop understanding in the emotional impact of colors in their lives.
 244

250 **2.2 Color and Emotion Associations**

251 Color-emotion associations exist at universal, cultural, and individual levels [28, 33]. Universally, brighter, lighter colors
 252 are associated with positive valence, while darker colors are associated with negative valence [35, 44]. Warm hues (e.g.,
 253 reds, oranges, yellows) are often connected with high-energy emotions, and cool hues (e.g., blues and greens) tend to
 254 correspond with lower-energy emotions [76]. The media further reinforces these associations [20, 55]. However, color
 255 meanings are not fixed. Red, for instance, can represent both anger (high arousal, unpleasant) and love (high arousal,
 256 pleasant) [35]. Beyond considering hue, value and saturation can play large roles in the emotional impact of a color. For
 257

261 example, a study found that valence tends to be higher for blue compared to other hues, but only for highly saturated
262 colors [76].
263

264 Cultural context also plays a key role in shaping color-emotion mappings [35]. For example, in China, red is strongly
265 associated with joy, celebration, and good fortune, often appearing in decorations during Lunar New Year and other
266 festivals [32, 35]. In contrast, in Western contexts, yellow is associated more closely with joy [8, 15]. These cultural
267 associations are just examples and cannot represent the diverse ways in which these colors are used to represent
268 meaning [2, 8]. Similarly, while brightness often aligns with positive valence in Western cultures, this may not hold
269 true elsewhere. An example of this is in Beijing opera, where heroes wear red masks while adversaries wear white
270 ones, reflecting an opposing symbolic relationship [16]. Numerous other cross-cultural studies demonstrate how color
271 preferences and meanings vary worldwide [18, 64, 79]. From these examples, we can start to understand that it is
272 difficult or even impossible to define color-emotion associations that mean the same thing to everybody.
273
274

275 Individuals, while they may follow preferences generally aligning with the environment they grew up in, can also
276 hold unique and highly personal associations between color and emotion [28, 33] (Figure 3). Prior research demonstrates
277 that personal preference and past experiences with a specific color significantly shape emotional interpretations of
278 that color [36, 62, 63]. For example, the color red may evoke excitement or warmth for someone who associates it with
279 festivals, but trigger anxiety in another who links it to danger [35]. This aligns with ecological valence theory [63], which
280 suggests that the valence a color induces is tied to how positively or negatively people feel about objects associated
281 with that color. However, cultural and societal norms of color-emotion associations have been so deeply ingrained
282 in media and our environments that it's difficult to break away from these norms [33]. In Kushkin et al. we see that
283 emotions which are commonly color associated showed consistent mappings while other emotions prompted varying
284 color associations: "for some emotions, like anger, happiness, and disgust, participants demonstrated more consistent
285 color selections, while for the others, like awe, confusion, and surprise, color choices show higher variability" [43].
286 In designing Intelligent User Interfaces (IUI) [25], this variability highlights the importance of accounting for both
287 cultural regularities and individual differences. Systems that rely on color to communicate affective states may need to
288 adapt dynamically, allowing for personalization or context-sensitive mappings rather than assuming uniform emotional
289 interpretations.
290
291

292 2.3 Color-Emotion Affective Systems

293

294 Prior work within the field has leveraged color as a medium for tracking and communicating emotional states. However,
295 many of these systems rely on either user-defined color-emotion pairs [6, 9] or generalized societal associations [72].
296 This approach places the interpretive burden on users, who must decide what colors mean to them. This process
297 can be ambiguous or unstable over time. Moreover, color-emotion associations can shift as individuals' personal
298 preferences, interactions with colors in their lives, and cultural contexts evolve [63]. These practices also do not support
299 users in understanding how color can impact their emotional states, whether in their digital devices or surrounding
300 environments.
301

302 Chromatize is a flexible and minimalist self-tracking application where users can log a color for emotion tracking
303 through three methods: selecting a color from a palette of colors, choosing a color from a small set of pre-selected
304 colors, and capturing a color from their current environment through a smartphone camera [9]. Although users are
305 able to log colors in various methods through the app, the application provides limited color-based visualizations or
306 summarized insights. This limits users in long term emotional reflection and development of understanding of evolving
307 environments.
308
309

313 relationships with color. In addition, without specific indications of color-emotion meaning in past logs, users may
 314 have a difficult time interpreting colors that do not mean the same thing to them anymore.
 315

316 Trackly is another self-tracking application which uses coloring of pictorial trackers to visualize personal data.
 317 Users can define tracking parameters, customize color schemes, and choose from six tracker types, including text, time
 318 ring, body shape, matrix, origami animal, and mandala trackers [6]. While Trackly presents opportunities for users to
 319 engage in self-tracking in an expressive and customizable manner, it is limited in providing insights into users' personal
 320 interactions with color as a method of self-expression.
 321

322 Similarly, MoodJam is an online diary that allows users to track their moods through colors [46]. Users can select
 323 colors from a color palette, associate these colors with words, and add a note to describe how they are feeling. Users
 324 can then visualize their moods in different ways. GoSlow is a mobile application designed to help users slow down
 325 through various methods of reflection including writing, taking a photograph, choosing a color, or diary [49]. These
 326 applications are able to support multimodal user input, such as color and text-based reflection, but less so focus on color
 327 as a continuously changing method of user expression. Other applications, like How We Feel, a journal app to help
 328 people better understand their emotions, predetermine color-emotion associations for users to choose from: yellow for
 329 high valence and high arousal, red for low valence and high arousal, blue for low valence and low arousal, and green
 330 for high valence and low arousal [72].
 331

332 Across these examples, we can see that while color affords accessibility, expressiveness, and flexibility, current
 333 systems overlook the dynamic nature of color-emotion associations and utilization of these personal associations to
 334 help users adjust their emotional states. Most existing systems either hard-code color-emotion correspondences or
 335 offload the burden of definition to the user. This raises challenges for IUIs, where the goal is not only to sense or display
 336 but also to adaptively mediate. Building on these trajectories, our work explores the potential of systems that integrate
 337 color-based customization to more faithfully reflect personal meaning.
 338

339 The use of color-based adaptive interfaces for emotion management and adjustment remains relatively underexplored.
 340 Prior work has demonstrated that color can influence and regulate emotional states, highlighting its potential as a
 341 medium for affective feedback [60, 78]. Previous research on AUIs has further shown their potential as catalysts for
 342 emotional state change. We see this in Emotioncontrol, a Model-Free Reinforcement Learning (MFRL) approach for
 343 adapting interface elements for emotional response [4]. Through Emotioncontrol, Alipour et al. studied how light and
 344 dark color themes, small and large font sizes, satellite and street view map types, and hidden and visible popups could
 345 cause emotional responses in users. The study found that various UIs could evoke specific emotions in users.
 346

347 We also see the potential of color-based AUIs for emotion management through EChat, an emotion-aware messaging
 348 platform [42]. Through facial emotion recognition, EChat detects negative valence in the user's emotional state and
 349 changes the chat's UI color theme to reach the target emotion of neutral. In a pilot study, participants reported increased
 350 awareness of their emotions when interacting with the adaptive interface.
 351

352 Building on this line of work, Hueman takes a personalized approach by adapting to users' desired emotional states
 353 and considering their individual color–emotion associations. Unlike prior systems that employ static or generalized
 354 mappings, Hueman dynamically modifies both the application interface and the user's mobile interface to support
 355 personalized emotion regulation.
 356

360 3 Designing Hueman (Designing Human)

361 We developed Hueman, a personalized color-based emotion logging application which integrates color-based AUI for
 362 users' emotion management and adjustment. Specifically, we explored how users engage with a system that, given a
 363

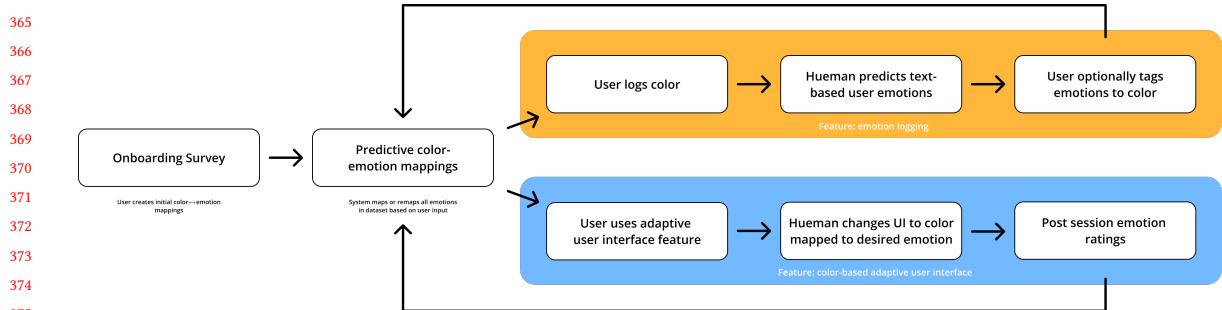


Fig. 4. System user interaction flow of Hueman

color input, suggests possible user emotions based on an initial onboarding process and subsequent color logs. We also explore how users interact with color-based adaptive interfaces on their mobile devices. This section offers the design rationale for Hueman and the results of a pilot study which informed design decisions in the version of the application used for user study.

3.1 Introducing Hueman

In designing the initial version of Hueman, we drew inspiration from existing digital [9, 37] and manual [34, 54] self-tracking tools and practices relating to emotions, color, and visualization. In exploring earlier works, we took note of maintaining use of systems [1, 48], difficulty in the action of self-tracking [1, 9], visualizations that users can easily understand [5], and preference for aesthetically pleasing interfaces [1, 5]. Based on these factors, we maintained several design considerations in creating Hueman, including personalization, the ability to prompt actionable insights, visual appeal, simplicity in design and navigation, and user-friendly visualizations. The main features of Hueman include (Figure 1 and Figure 6):

- A calendar-based home page where users can select a date to log emotions by choosing colors and adding emotion tags for specific time frames.
- Week and year views for browsing historical emotion logs.
- A data analytics page for visualizing relationships between emotions and colors, including “mapped colors for a given emotion,” “mapped emotions for a given color,” and “top emotions” within a selected time period.
- An emotional management page, where users input their current and desired emotions. The system then adapts both the app interface and the user’s mobile phone theme to a color aligned with the desired emotional state.

3.2 Pilot Study

To inform the iterative design of Hueman, we conducted a short pilot study with three participants over a three-day period. This consisted of an initial onboarding session, and then a think-aloud walkthrough and an exit interview to understand participants’ experiences, perceptions of functionality, and the app’s emotional effectiveness. Each participant had some previous experience with self-tracking technologies (P1: social-media based logging, P2: fitness based logging and journaling, P3: social-media based logging).

Participants were first introduced to the Hueman app and its features. They then installed the application through Apple’s TestFlight. They were guided through the setup process for the color-based adaptation functionality on their

mobile devices. In order to complete this process, participants were given 13 pre-designed wallpapers of different color themes, including red, yellow, orange, pink, purple, blue, sky blue, cyan, green, brown, gray, black, and white. For each wallpaper, they were asked to set it as a new wallpaper on their device and configure Apple Shortcuts for adaptive switching. For example, on receiving an email with subject “Red”, a shortcut will run that switches their wallpaper to the red one. During onboarding, users were prompted to fill out the onboarding survey where they mapped and reverse mapped their color-emotion associations. They also added the application widget to their device (Figure 1).

Participants were asked to explore the application freely over three days, without a fixed quota for logs or adaptive sessions. This open-ended approach allowed us to observe the contexts and motivations prompting emotion logging and adaptive use. The home screen widget also aimed to encourage engagement throughout the study period.

3.3 Pilot Findings

Here, our findings are summarized into these main points which guided our design iteration of Hueman.

3.3.1 User Interface Context in Color Preference. In the onboarding survey, users selected colors that they associated with specific emotions. However, when these colors were applied as the app UI or mobile wallpaper, some participants found that their chosen colors negatively impacted device usability.

For example, P1 picked bright and saturated colors, such as bright red for “happiness” or “joy”, but when a bright red was set as her wallpaper, it felt overly blinding due to the high saturation, and made it difficult for her to interact normally with her mobile device. To address this, we added a preview feature in the onboarding survey, allowing users to see how the selected color would appear as a full-screen background before confirming their choice. This gave participants a more realistic sense of how the color would affect the app and device usability.

3.3.2 Difficulty in Making Color-Emotion Associations. In the second part of the onboarding survey, users were presented with a color and asked to select an emotion corresponding to that color using a search functionality. This design aimed to address two concerns: bias toward selecting the first emotions visible in a scrollable list, and the overwhelming number of emotions available in the dataset. However, both P1 and P2 reported experiencing difficulty in choosing an emotion for a given color. In order to make this process more intuitive, for the second part of the onboarding survey, users could choose how much they enjoy seeing a given color (corresponding to valence) and the level of energy the color makes them feel (corresponding to arousal). Within the onboarding process, guiding prompts were also implemented to help users better interpret how they feel about a color and emotion pair. For example, “Imagine yourself in a room surrounded by walls this color, how does it make you feel?” (Figure 1).

3.3.3 Color as a Method for Recognizability on Mobile Devices. In the initial prototype, adaptive color themes extended to app icons, tinting icons to match the wallpaper color. In post-pilot interviews, P1 and P3 reported that this made it difficult to recognize apps. P1 specifically mentioned that she relied on default app colors and icon cues, including notification badges, to navigate her device. Based on this feedback, tinted icons were removed from the adaptive color theme to preserve usability.

3.3.4 User Agency. Participants noted that sometimes the app applied adaptive colors that did not match their desired current mood. This discrepancy could result from prediction inaccuracies or multiple colors mapping to the same emotion. In order to maintain user agency, we implemented an adapted color preview where the app adapts to the recommended color for the user’s desired emotion, however, users are given the opportunity to modify that color before applying it system-wide (Figure 4). Maintaining adaptability and user control was a core design consideration, as both

469 emotional and visual preferences are highly personal and dynamic. This adjustment ensures that users can tailor the
 470 system to their current emotional needs while still benefiting from adaptive color-based support.
 471

472 3.4 Defining Emotion

473 Santos et al. define emotions as short-lived feelings caused by contextual stimuli that can be represented across
 474 multiple dimensions, whereas moods are longer-lasting, either positive or negative, and often result from unclear
 475 factors, comprising multiple specific emotions [67]. For the purpose of this study, we define emotion as a short-lived,
 476 non-physical feeling that an individual can express in the form "I feel _____".

477 To quantify emotions, we used the Valence-Arousal spectrum (Figure 5). The VA spectrum was first introduced by
 478 James Russell and is a common method of quantitatively measuring emotions [66]. In the VA spectrum, emotions are
 479 measured two-dimensionally: through valence and arousal, where valence indicates the level of positivity or negativity
 480 an emotion gives to users, and arousal indicates the level of energy an emotion gives to users. Warriner et al. created
 481 a dataset of words with VA scores, each on a scale of 0-10 [75]. Based on our emotion definition, we extracted all
 482 emotion-related words from that dataset. This gave us 552 emotions, each with a valence and arousal score. Emotion
 483 valence ranged from 1.90 to 8.48 with "hateful" being the lowest valence emotion and "happiness" being the highest
 484 valence emotion. Arousal ranged from 1.67 to 6.95 where "calm" and "dull" represented the lowest arousal emotions,
 485 and "ecstatic" and "sexual" represented the highest arousal emotions.

486 3.5 Designing the Onboarding Process

487 Before accessing the app, users complete an onboarding survey designed to establish initial color-emotion associations [57]. In the first part of the survey, users are presented 22 emotions spanning the VA spectrum, including emotions
 488 in each quadrant, emotions between quadrants, and outlier emotions (Figure 5). For each emotion, users select a color
 489 using a color picker. Once a color is selected, the onboarding page updates to display the chosen color as a background,
 490 allowing users to preview it in a mobile setting and make adjustments as needed (Figure 1).

491 In the second part of the survey, users are presented with 13 colors representing common themes that broadly cover
 492 the color spectrum. Participants rate each color on two dimensions: how much they like it (corresponding to valence)
 493 and the level of energy it evokes (corresponding to arousal). The purpose of this survey is to determine an initial
 494 color-emotion mapping association for each emotion in the dataset based on a select number of colors and emotions
 495 that can broadly cover the emotion spectrum and the color spectrum.

500 3.6 Personalized Color-Emotion Mapping Algorithm

501 Hueman uses a hybrid machine learning approach that combines user-provided associations with VA space interpolation
 502 to generate personalized color-emotion mappings. During onboarding, users create a set of direct mappings $M =$
 503 $\{(e_i, c_i)\}$ where e_i represents an emotion and c_i its associated color. The system then constructs a complete mapping
 504 for all emotions in its dataset through k -nearest neighbor interpolation in VA space.

505 For an unmapped emotion e_t with coordinates (v_t, a_t) , the system identifies k nearest mapped emotions based on
 506 Euclidean distance:

$$507 508 509 510 511 512 513 514 515 516 517 518 519 520 d(e_t, e_i) = \sqrt{(v_t - v_i)^2 + (a_t - a_i)^2}.$$

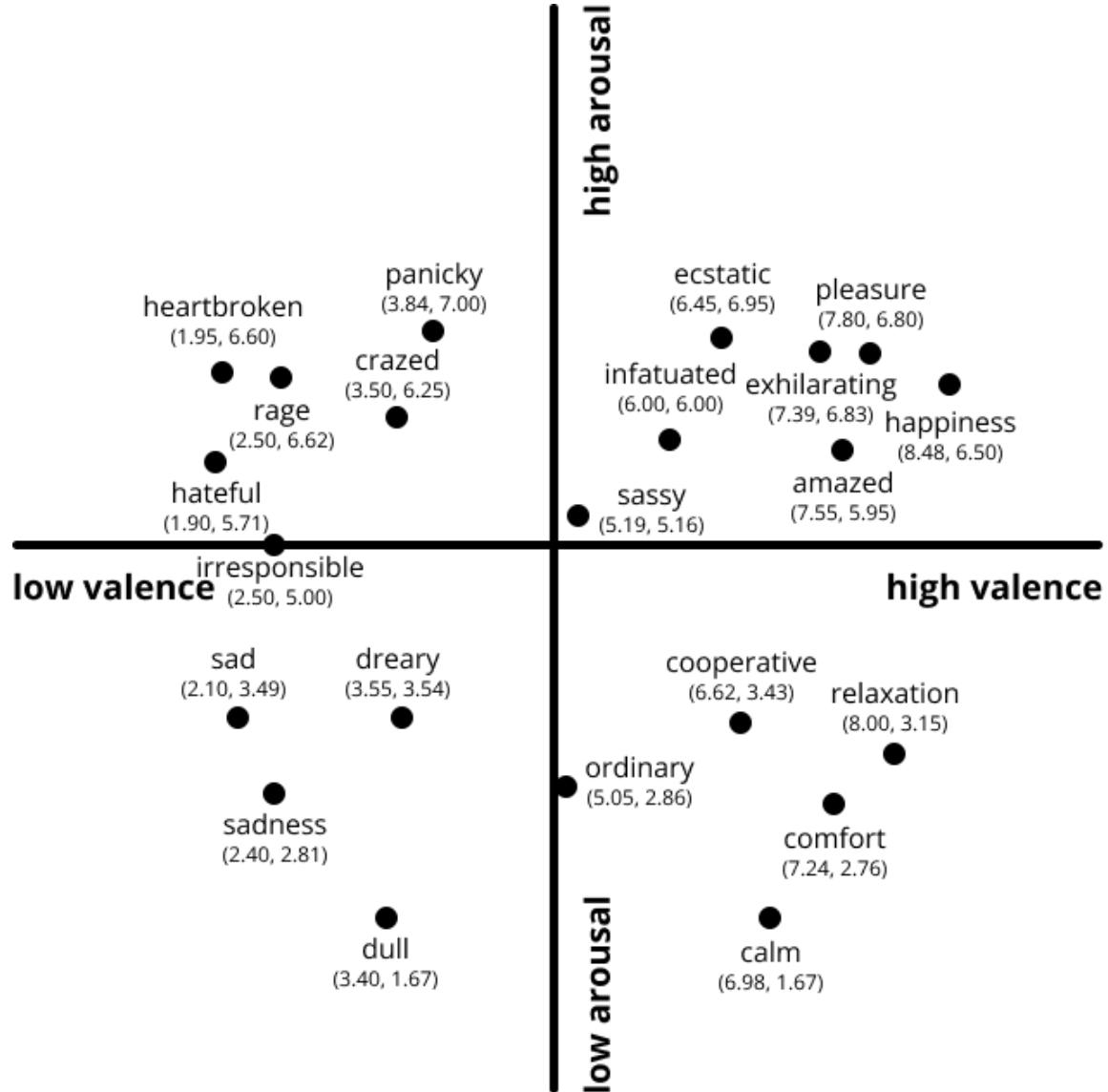


Fig. 5. Emotions presented in Part 1 of Hueman's onboarding survey mapped based on their scores on the valence-arousal spectrum.

The predicted color is computed through distance-weighted interpolation:

$$c_t = \sum_{i=1}^k w_i \cdot c_i,$$

where weights

$$w_i = \frac{1}{\sum_{j=1}^k \frac{1}{d(e_t, e_j)}}$$

573 prioritize closer neighbors.

574 This interpolation operates in HSV color space to independently adjust hue (H), saturation (S), and value (V)
 575 components. As users continue logging emotions with colors, the system refines these mappings through incremental
 576 learning: each new color–emotion pair updates the mapping and triggers regeneration of predictions for related
 577 emotions.

578 To ensure visual distinctiveness when multiple emotions map to similar colors, the algorithm applies variations
 579 guided by emotion-specific seeds derived from string hashing. This approach balances the following goals: respecting
 580 users’ explicit associations, adapting dynamically to new user data, and maintaining psychological coherence through
 581 VA theory.

582 There is continuous refinement of the user mappings. When a user selects emotions $E' = \{e'_1, e'_2, \dots, e'_n\}$ for a given
 583 color c' , the system first directly updates $M \leftarrow M \cup \{(e'_i, c') \mid e'_i \in E'\}$, then initiates a complete remapping phase for
 584 all unmapped emotions in the dataset. The system also implements cross-validation through bidirectional mappings,
 585 maintaining both emotion→color and color→emotion indices that are synchronized after each update to maintain
 586 consistency. The algorithm also applies adaptive diversity constraints during remapping to prevent convergence toward
 587 identical colors for similar emotions.

588 3.7 Color Logging and Viewing

589 The main page of Hueman consists of a month view which displays the current month and indicates the current day
 590 (Figure 6). By selecting a day, users can access a time-based interface with a scrollable 24-hour view. Users can add
 591 entries to the current day by selecting a start time and end time, and then choosing a color to represent the way they feel.
 592 Based on the selected color, the system predicts a set of possible emotions (e.g., 20) that the user may be experiencing
 593 (Figure 2). These are predicted based on past logs and the onboarding survey. In designing the logging method and
 594 views, we prioritized ease of use and opportunities for reflection.

595 Digital or analog journaling can be challenging for individuals with demanding schedules, limited cognitive resources,
 596 or those who simply forget what they felt or did on a given day [1, 48, 80]. Lowering barriers to entry is critical, as
 597 motivation strongly influences initial adoption and integration into daily routines [30, 61].

598 To address these considerations, Hueman uses a calendar-based input interface inspired by commonly used platforms
 599 such as Google Calendar and Microsoft Outlook [26, 58]. This familiar layout supports convenient logging and context-
 600 based reflection, allowing users to recognize time periods and associated emotions [5, 39, 40]. Using color as a medium
 601 for emotion logging further enhances expressiveness while remaining low-burden [9].

602 Hueman takes in user emotion data through manual entry. Manual entry, even through technology-mediated
 603 approaches has been associated with sense of agency, self-awareness, and increased mindfulness [1, 9]. Users maintain
 604 control in the data that they provide to Hueman and in utilizing information and tools Hueman provides to support
 605 their well-being. The way Hueman is designed is intended to make in-moment reflection easier for users by allowing
 606 them to easily log their feelings even within time-constrained contexts.

607 Logging is restricted to the current 24-hour period, with past and future days visible but locked for editing. This
 608 design encourages timely recording of emotions, reduces the likelihood of forgetting or reconstructing past experiences,
 609 and minimizes the pressure to retrospectively fill in logs—issues participants reported as frustrating in prior studies [1].
 610 Additionally, the interface and visualizations are designed so that days without logged entries do not stand out, avoiding
 611 negative emotions such as guilt associated with missed tracking [1].

625 3.8 Data visualization

626 Reflection occurs when individuals attempt to make sense of their data and their lives [11, 48, 71], making it essential
 627 to provide tools that support reflection across different time scales [50]. Hueman offers a variety of time-based views,
 628 including short term detailed views (day, week) and long term summary views (month, year). Time based views have
 629 proven to be both aesthetically pleasing and easily understandable to users, supporting multiple forms of reflection and
 630 self-understanding [5, 31, 74].

631 Hueman acknowledges that some users prefer not to have their entire day represented by a single color and would
 632 want a more nuanced representation [68]. Through day and week views, users can easily observe the distribution of
 633 colors representing their emotions and patterns that may inform adjustments to their behavior or environment. In
 634 order to maintain long-term clarity. In the month and year views, each day is represented by the color most dominantly
 635 logged during that day.

636 Beyond time-based views, Hueman provides analytical insights into a user's color-emotion associations, including
 637 emotions associated with a given color, colors associated with a given emotion, and top emotions over a selected time
 638 period [21] (Figure 6). These insights allow users to leverage color for emotion management and adjustment in daily life,
 639 including applications in clothing, interior decor, and user interfaces. In addition, understanding dominant emotions
 640 given a specific time frame (days, weeks, months) can help users understand themselves better and have a broader view
 641 of their emotional life.

642 In designing visualizations, we prioritized minimalism and aesthetic appeal as this can make them more engaging [14,
 643 23] and memorable [10]. Furthermore, casual and approachable depictions of personal data, as implemented in Hueman,
 644 support more frequent and comfortable self-reflection, aligning with ongoing explorations of aesthetically driven
 645 personal informatics [65].

652 3.9 Adaptive User Interface Functionality

653 In the adaptive interface feature, users can enter their current emotion, the level they feel it on a scale to 1-5, and
 654 their desired emotion. Based on the inputted desired emotion, the interface will adapt to a color which is mapped
 655 towards that emotion (Figure 1). The user can first preview the color through the application adaptation, and adjust if
 656 desired [41, 61]. Once the user confirms their selection, they can start the adaptive theme session, which is a 5-minute
 657 session of using the adaptive interface in both the application and their mobile wallpaper. The widget on the user's
 658 device will also adapt.

659 The way that AUI wallpapers work for iOS mobile devices is through Apple Shortcuts. When the user confirms their
 660 color for UI adaptation, the Hueman app categorizes that color into one of the 13 categories mentioned in 3.2 and sends
 661 an email with that color category to the user's email. When the user receives this email notification, a shortcut will
 662 run to adapt their wallpaper to the given color. Setting up shortcuts with wallpapers and associations is part of the
 663 onboarding for the app, and the reason adaptation is done this way is due to limitations in the permissions that Apple
 664 provides to applications in terms of user interface adaptation.

665 The 13 colors chosen for the themed wallpapers are based on Adobe's defined hex values for these colors and then
 666 transparency adjusted 50% towards the white direction [3]. The reason there is a 50% adjustment is for a few reasons.
 667 The first is because highly saturated colors, such as those provided from Adobe [3] make it difficult for users to use
 668 their mobile devices and causes overstimulation due to the saturation, which can decrease the impact of emotional
 669 adjustment. This was shown from the pilot study. The second reason is to maintain the wallpaper background as a
 670

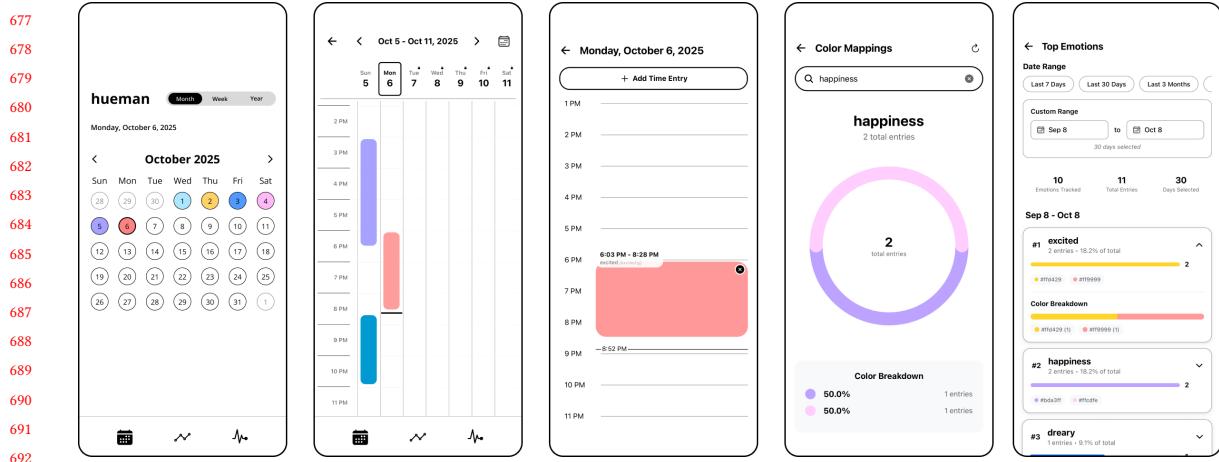


Fig. 6. Pages from the Hueman application, including (left to right) (1) monthly view, (2) weekly view, (3) daily view, (4) emotion to color mappings, and (5) top emotions.

theme rather than the central adaptive aspect due to the limitations in customization through iOS and amount of work necessary to initially set up wallpapers and shortcuts for this feature of the application. Due to the restricted customizability aspect of iPhone wallpapers, these color backgrounds stand out less in order for the application widget to stand out more. The widget, like the Hueman application, is able to completely adapt colors, and because the widget takes up ample space on the user's screen, it can act as support in more customized theme adaptation. This is one of the significant reasons for inclusion of a widget in addition to act as a reminder to log emotions.

After the 5-minute session ends, the user goes back to the application and scores both emotions again on a scale of 1-5. Based on these inputs the algorithm will adjust the user's color-emotion associations.

4 Evaluation

In evaluating Hueman we wanted to understand: (1) how it could support emotional awareness and reflection, (2) users' experiences with personalized, color-based emotional tracking and custom color definitions, and (3) how they engaged with a color-adaptive UI for emotional adaptation, including perceptions of its effectiveness. With IRB approval, we conducted a user study with seven participants who had prior experience with various forms of self-tracking, such as social media-based logging, automated biometric logging, fitness tracking, and journaling. We used the findings both to evaluate the application's design and to position it as a design probe for exploring relationships between color and emotion. Participants were compensated with a \$25 gift card for participating in the study.

4.1 User Study Procedure

To explore the effectiveness of Hueman, we conducted a formative study with seven participants recruited from the researchers' social network. Participants expressed interest in gaining insight into their emotions, and were preferred if they had prior self-tracking experience. Ages ranged from 18 to 50, with an average of 28.4 years.

Participants were guided through the onboarding process via a combination of verbal instructions and a written onboarding guide. This included downloading the app, creating an account, and setting up the AUI. Participants then used the application for a week. They were encouraged to explore the app and interact with its features daily, but were

Manuscript submitted to ACM

not required to log at specific times. Instead, they were instructed to log emotions when it felt natural or meaningful to them.

At the conclusion of the study, each participant completed a 30-minute exit interview consisting of qualitative and quantitative questions to gather feedback on the app's functionality, usability, and impact on emotional awareness.

5 Results

5.1 Can Hueman support emotional reflection and awareness?

Hueman supported emotional reflection both in the moment and retroactively. P1, P2, P4, and P7 reported that prior to using Hueman, they rarely reflected on their emotions. Through using Hueman, they became more aware of what they were feeling at a given moment and could also look back to analyze past emotional patterns. Some users, like P1, P2, and P5, used the logging feature of the application as they recognized emotional changes. Others, like P4, also used the app at the end of the day to reflect on their entire day: *"at the end of the day, it's time to wind down and reflect on emotions"*. P4 mentioned that using Hueman *"definitely validated the emotions [she] already had and brought implicit ones to life, it made [her] understand [herself] better in the way [she] perceives the world"*. Participants appreciated the manual logging feature, which gave them agency in identifying and processing their emotions: *"manual and mental tracking is so much better because I don't really agree that you should be trusting physiological things like because I was doing this, I was stressed. Mental is not always what your body is feeling, you need to make sure you feel ok, not through bodily indicators"*. They agreed that the simple interface made the app and its features easy to use, with P4 saying that the look of everything is *"simplistic and minimalist, it doesn't try to make it too much in your face and overwhelming"*.

Hueman's time-based logging format further supported context-based emotional reflection. Users reported thinking more about the causes of their emotions even without explicit prompts. For example, P4 noted that *"[Hueman] forced [her] to think about what [she] did that day. Certain social events made [her] happier and [she] reflected on how things made [her] feel"*. P5 mentioned that *"[her] emotions were more skewed towards excitement because it was the weekend, and back at school [she] was more bored and tired"*. Users pointed to the time based logging system as a method to see *"how emotions change throughout the day through a general color scheme"*. P6 added that she noticed *"[she] usually feels really happy after talking to someone [she] loves, and a lot more stressed or concerned after spending a long time alone"*.

5.2 Experience with Personalized, Color-Forward Emotional Tracking

During the onboarding survey, participants found it easy and natural to select colors for emotions. P5 explained *"I just picked whatever I vibed with at the moment, whatever I felt inspired to choose"*. Through using Hueman, users began to reflect on their existing color-emotion associations. P2, P3, P4, and P5 all cited the Disney Pixar movie Inside Out [20, 55] as the source of their initial color-emotion associations before using the app. P5 described that her main association before using the app was that sadness was blue, and that it was influenced by Inside Out and other media. P4 further mentioned that, to her, red meant anger and frustration, blue meant relaxation and sadness, and yellow is an energetic and happy color, citing these associations from Inside Out, which she watched when she was younger. P2 further emphasized on the impact of media on color-emotion associations, saying that *"When you see characters from cartoons come up from a screen, you can immediately tell if they're good or bad from the color of clothing they're wearing"*.

However, users reported that through using the application, they realized that media-influenced associations did not always match personal experience. P1, P2, and P4 felt that the colors they liked made them happier, which diverged from typical associations. P2 expressed that green and blue colors reflected positive valence for her, differing from the

781 common associations that yellow represents joy and blue represents sadness. P6 further mentioned that “*I realized*
 782 *sometimes I feel blue, but it doesn’t really attach to any negative or sad feelings. I just want to get close to water*”.
 783

784 Hueman encouraged participants to think more deeply about personal color-emotion associations. P4 said that to
 785 her, purple means collaboration: “*I don’t know why exactly I thought that, but it kind of clicked for me that it was. I lean*
 786 *towards purple, and this was the case when I was logging my emotions. I haven’t really seen this in another context so it*
 787 *was surprising*”. P4 also reflected on intrinsic associations revealed by Hueman’s data visualizations: “*I didn’t realize I*
 788 *used light pink for stress and frustration, I personally did not think that about myself, and I thought it was interesting*”.
 789 Participants reported that Hueman prompted them to question their assumptions. They asked, “*Why do I think this*
 790 *color is this feeling?*”, and brought connections in the brain to an explicit level, strengthening their own emotions and
 791 preferences. These experiences represent reflection through defamiliarization, making the mundane and everyday
 792 strange [65]. We found that Hueman led to defamiliarization of colors and how users interact with colors. P4 saw colors
 793 in a new way since she did not know she had these associations in the past. In addition, P6 said that using Hueman
 794 made her more sensitive to color and the differences between colors: “*I would say my color association with emotions*
 795 *becomes stronger now after using the app. Even if something has the same yellow tone, I will adjust how bright and light it*
 796 *will be depending on how strongly I feel*”.

797 An interesting finding is that using Hueman made users reflect on how their surroundings can influence their
 798 color-emotion associations and how their own associations change. P5 mentioned that she logged two shades of orange
 799 in the same day, but one as excitement and one as calmness. When logging orange as calmness, she was in a cafe. The
 800 cafe was orange and it made her feel calm. She realized this impact when reflecting on the representations of colors and
 801 emotions within the Hueman app and had made these associations more subconsciously in the moment.

802 Users further mentioned liking both detailed views of color logs and more general views of color logs. P4 liked how
 803 she could see the colors that spanned her day while P6 liked the monthly calendar view to see how her day progresses
 804 with colors.

805

806

807 5.3 Experience with Hueman’s Predictive Emotion Generation

808 Users indicated that Hueman was generally able to predict their emotional state from their inputted color. All participants
 809 indicated that in the 20 or so emotions that Hueman recommended for each color entry, they were able to find at least
 810 one that accurately reflected their emotional state. P7 mentioned that the application was “*very accurate*” at identifying
 811 the emotions she was feeling. The distribution of tagged emotions that were generated versus user-searched was
 812 65.2% to 34.8%. P5 mentioned that Hueman’s predictive recommendations could lead her to find a word to describe her
 813 emotions that she couldn’t have thought of herself, but believed was accurate. In addition, Hueman’s emotion predictive
 814 system led users to use a broader variety of language in describing their emotional states. P1 said that “*Usually I would’ve*
 815 *said I’m happy, but if the app recommended joyful I might choose that instead. Similarly, I might choose comfortable or*
 816 *calm instead of relaxed, which I usually use*”.

817 However, prediction can be difficult as one color can represent many emotions. For example, similar shades of blue
 818 can represent both calmness and sadness, which P4 indicated. This can make it difficult for the algorithm to predict
 819 emotions even within one quadrant of the valence arousal spectrum. P5 also mentioned that when the Hueman app
 820 predicted emotions that did not resonate with her at the moment, it may have been due to conflicting logs she had
 821 entered in the past.

822

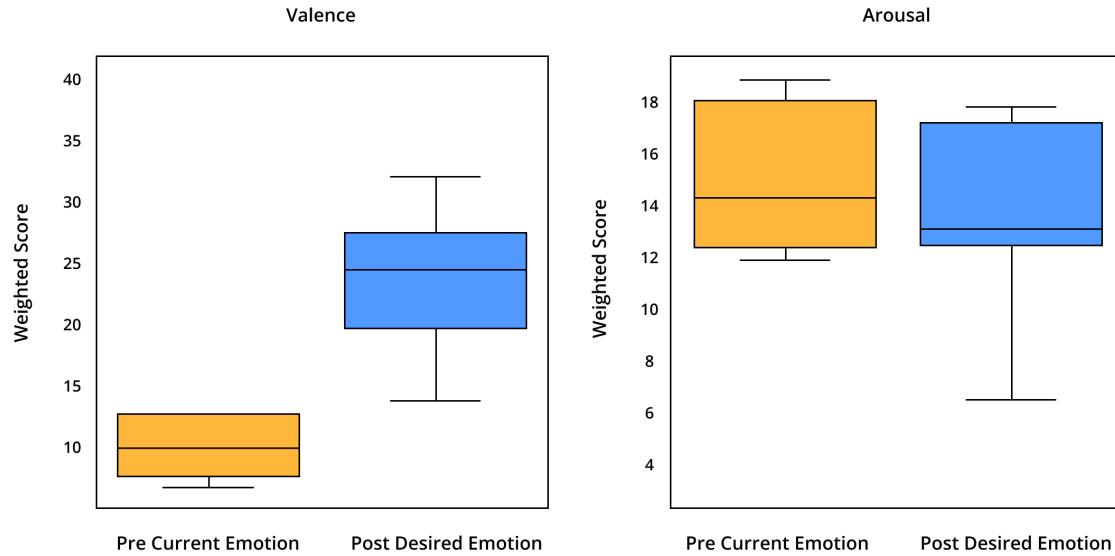


Fig. 7. Changes in users' valence and arousal states before and after using the color-adapted interface session.

5.4 Adaptive User Interface for Emotion Management

Hueman demonstrated the potential for adaptive, color-based UI to support emotion management and adjustment. While our study did not aim to establish causal claims, user experiences provide insights into how AUIs may support emotional regulation.

In helping users move away from their current emotions, participants rated their current emotions at an average of 3.11 before the adaptive emotion sessions and 2.00 afterward. Weighted scores (by extent to which users feel current and desired emotions) indicate that users' current emotions started at a mean valence of 11.96 and a mean arousal of 14.91. After the sessions, the weighted valence of users' goal emotions increased to a mean of 24.75, while arousal decreased slightly to a mean of 12.98, suggesting a shift toward more positive and slightly calmer emotional states (Figure 7).

We found that color-adaptive UI may be more effective for moving towards some VA emotional quadrants than others. For example, P5 used green to calm down and red to improve her energy. She mentioned that green helped her a lot, while red maybe not so much and this may be because she associates red with excitement and also anger. P7 mentioned that the app was effective both for moving towards high valence and low arousal states as well as high valence and high arousal states. Looking at Hueman's logs, the application was most effective for moving towards high valence, low arousal emotions such as calmness. We further noticed that color-adaptive UI works better for color-emotion associations where that color is associated with only one emotion, or one type of emotion for that user. P4 mentioned that her favorite color is light blue, so she connects it to calm and comfort. But the soothing aspect of blue can also mean sadness. She continued expressing that when one color is associated with multiple things, it's harder for her to feel one particular way. For example, yellow was more effective than blue in inducing positive valence emotions. This is because to her, yellow means energy, joy, and happiness. If yellow had meant both joy and anxiety it would be harder.

Users primarily used Hueman to move toward high valence, low arousal emotions such as calmness or happiness. Due to these use cases, maintaining a consistent color on a page with a simple UI could itself be a method of achieving

885 higher valence and lower arousal. In addition to the influence of color, turning away from the stimulation in mobile
 886 devices through staying on the color-adapted application page could help users reach higher valence and lower arousal
 887 emotions. For example, P5 used the app one night when she was feeling restless and wanted to feel calm. Shortly after
 888 starting the emotion theme session, she fell asleep. She also mentioned that staring at the color on the application was
 889 more helpful than having it on the home screen and using other features on mobile devices.
 890

891 This leads to the misuse [47] of the application's emotion management page and timer as an oasis from other
 892 stimulating aspects of mobile devices. P4, for example, used Hueman's 5-minute timer as a time to calm down, breathe,
 893 and reflect on emotions. Stopping what she was doing helped her reach more positive and lower arousal states. *"When I*
 894 *used the timer, it allowed me to at the very least reflect on why I feel the things I feel and why I want to feel a certain way. A*
 895 *reflection of what I do to make my day better. It's a 5-minute timer, you can take five minutes in your day."*
 896

897 6 Discussion

900 6.1 The Role of Color in Emotional Self-Tracking

902 We noticed a few different methods of reflection through the use of Hueman, which can be split primarily into two
 903 cases: reflection on contextual causes of emotions and defamiliarization of color-emotion associations as reflection. For
 904 example, participants such as P4 and P5 described reflecting on how specific contexts (e.g., weekends, social events, or
 905 physical environments) shaped their emotional states. This indicates that even a simple logging interface can surface
 906 cause-and-effect reasoning in everyday emotional life, extending prior work on reflection in personal informatics.
 907

908 Hueman also invited users to question their implicit beliefs about color-emotion associations, bringing subconscious
 909 assumptions into awareness. Participants' initial associations were strongly influenced by cultural and media influences,
 910 but over time they diverged to develop more personalized schemas. This highlights a tension between culturally shared
 911 meanings of color, individually constructed associations, and psychological tendencies—both those ingrained through
 912 societal influence and those rooted in natural perceptions, such as associating blue with calm because of the sky. This
 913 suggests that future systems using color as symbolic representation should hold deeper considerations about how color
 914 is used and what representations are influencing users to think.
 915

917 A pattern across participants was the tendency to associate brighter or lighter colors with higher-valence states
 918 and darker shades with lower-valence or more negative states. Users explicitly described lighter shades as "good" or
 919 "positive," reinforcing prior work in color psychology [44]. However, these associations were not absolute. Some colors
 920 shifted in meaning depending on context (e.g., orange as both calming and energizing), suggesting that while brightness
 921 and valence may be correlated, their relationship is mediated by personal experience and situational cues.
 922

923 These findings indicate that color-emotion mappings in emotional self-tracking systems should not be treated as
 924 universal or fixed. Instead, designs could use color as a flexible design parameter. In addition, this points to the need
 925 for adaptive visual systems that recognize both common psychological trends and the deeply personal, contextual
 926 meanings that users bring to color.
 927

929 6.2 Agency and Manual Logging in Emotion Tracking

931 One theme that we noticed was the importance of agency in self-tracking tools. Participants valued manual logging,
 932 describing it as a way to preserve their interpretation of emotional states. For example, P4 noted that *"mental is not*
 933 *always what your body is feeling"*. Users also prioritized agency in the color their device was adapted to. Sometimes the
 934 application would recommend color UI themes that the user did not believe to be ideal at the moment, even if the color
 935

presented was associated with their desired emotion. Allowing preview of adaptive themes and user adjustment was a feature that was important to users as it allowed them to maintain interpretive control while engaging with suggested themes. Participants emphasized that the process of color adjustment helped them develop a deeper awareness of how their emotions fluctuate, highlighting the value of reflective, exploratory interaction in emotional self-tracking. In these ways, Hueman is aligned with approaches to personal informatics that emphasize self-determination and interpretive flexibility over algorithmic prescription [11].

Hueman also demonstrated the value of supporting multiple rhythms of reflection. Some participants preferred in-the-moment logging when they noticed emotional shifts, while others engaged in retroactive, end-of-day reflection. The coexistence of these practices suggests that effective systems should accommodate both immediate, situated reflection and longer-term, integrative reflection.

These findings highlight a key design implication: emotional self-tracking systems should be built to support diverse temporalities of reflection while maintaining users' sense of agency. Future designs could offer customizable rhythms (e.g., immediate prompts, daily summaries, or weekly reviews), enabling users to adapt the system to their personal preferences and evolving goals.

6.3 Expanding Emotional Vocabulary through Predictive Support

Hueman's predictive emotion suggestions demonstrated potential for scaffolding emotional articulation. Participants reported that the recommended terms helped them find words they "*would not have immediately thought of*" on their own, such as choosing joyful or comfortable instead of happy or relaxed. Beyond the predictive suggestions, Hueman preserved user agency by allowing participants to search the emotion database manually and select terms outside of the recommendations [41, 61]. This combination of predictive and manual exploration enabled users to actively learn and refine their understanding of their own emotional states, with several participants describing the process of identifying emotions as iterative and educational.

However, in using predictive algorithms, limitations remained, particularly where color-to-emotion mappings were ambiguous (e.g., blue representing both calm and sadness). This occasionally produced predictions that did not match the user's current state. These findings underscore the importance of framing predictive support as inspiration rather than prescription, allowing the system to facilitate learning without constraining personal interpretation. Future designs might adaptively refine recommendations while preserving user authority, supporting self-expression, reflective learning, and personal meaning-making in emotional tracking.

6.4 Our Phones as Tools for Emotional Management

Beyond explicit tracking and reflection, people often use their phones to regulate emotions in everyday life, sometimes intentionally and sometimes unconsciously. For example, individuals may pick up their devices to alleviate boredom or stress, to feel excitement or joy, or to seek calmness and a sense of social connection when anxious. This can occur through social media, gaming, messaging, or other forms of digital engagement. In this way, mobile devices act as ubiquitous tools for feeling or not feeling emotions. A study by Davis et al. examined how adolescents use Instagram for emotion regulation [19]. The findings revealed that while some teens engage with Instagram to improve their mood, by seeking out positive content or social support, others may experience negative emotions due to social comparison or exposure to distressing posts. This shows the complexity of digital platforms in emotional adjustment and the need for thoughtful design that considers users' emotional experiences.

989 Hueman extends this idea by making emotional management more intentional and reflective. By allowing users to log
 990 emotions, explore predictive suggestions, and adapt the color of the interface, Hueman transforms implicit interactions
 991 with devices into explicit opportunities for awareness and regulation. Participants reported that customizing colors or
 992 engaging with predictive emotion prompts helped them consciously shift toward higher-valence, lower-arousal states,
 993 or reflect on emotional fluctuations across time. Unlike typical smartphone use, which can be reactive or habitual,
 994 Hueman encourages deliberate emotional engagement.
 995

997 7 Limitations and Future Work

999 Our study has several important limitations. Due to the small sample size and exploratory nature of the user study
 1000 (seven participants over a week), we cannot make statistically significant claims about the effectiveness of color-adaptive
 1001 interfaces for emotion regulation. In addition, our work consisted of participants based primarily in a specific geographic
 1002 range. Future work with larger, more diverse participant populations is needed to validate the patterns we observed.
 1003 Similarly, the context of application use was limited to short-term, voluntary engagement, which may not fully capture
 1004 how users would interact with Hueman in everyday life over extended periods.
 1005

1006 While Hueman allowed for personalization of color-emotion associations, these mappings are influenced by psycho-
 1007 logical tendencies as well as individual experience. For example, participants often associated blue with calmness or
 1008 relaxation, a connection that may be shaped by environmental cues such as the sky or ocean. These inherent tendencies
 1009 suggest that while color-emotion associations can be personalized, they are also constrained by broader psychological
 1010 patterns. Future systems could explore adaptive mapping strategies that account for these tendencies while supporting
 1011 individual differentiation. In addition due to the limitations of wallpaper and mobile phone theme adjustment, Hueman
 1012 was limited in the range of colors it could change iOS backgrounds to, relying more on the application widget for
 1013 complete color adaptation.
 1014

1015 Although, Hueman enabled reflection on emotions, it may primarily capture surface-level reasons for feelings, such
 1016 as immediate situational triggers, rather than deeper causal mechanisms. Users reported that logging and interacting
 1017 with the app helped them recognize and articulate emotions, but understanding more complex emotional dynamics
 1018 likely requires reflection on factors such as upbringing, worldview, and other psychological influences, areas that
 1019 Hueman alone may not fully support. There is also potential for multi-modality in emotional awareness and adjustment.
 1020 For example, combining music and color could be powerful.
 1021

1022 There is design space for richer, more expressive interfaces and data visualizations. While Hueman focused on color-
 1023 adaptive UI and simple predictive suggestions, future work could explore multi-modal feedback, complex visualizations
 1024 of emotional trajectories, and interactive methods for self-reflection and emotion regulation. Such enhancements would
 1025 allow users to engage with emotions in deeper and more nuanced ways, increasing the potential impact of personal
 1026 informatics tools for emotional well-being.
 1027

1028 Finally, Hueman is not designed for users with color vision deficiencies. The system relies on color as the primary
 1029 medium for emotional expression, tracking, and adaptive feedback. Individuals who are color-blind may not perceive
 1030 the color-emotion mappings as intended. This restricts the generalizability of Hueman's findings to users with typical
 1031 color perception. Future work could explore other mediums to make the system more accessible and inclusive.
 1032

1033 8 Conclusion

1034 In this work, we presented Hueman, a personalized color-based emotion logging application that combines manual
 1035 emotion tracking with adaptive color interfaces to support emotional awareness, reflection, and regulation. Through the
 1036 Manuscript submitted to ACM
 1037

design and formative evaluation of Hueman, we demonstrated that color can serve as a meaningful medium for both expressing and understanding emotions, while AUIs can provide in-the-moment support for emotion management. Our findings highlight the importance of personalization, user agency, and context in designing emotion-focused personal informatics tools. Users valued the ability to map colors to their own emotional experiences, reflect on these associations over time, and engage with adaptive interfaces in ways that supported self-understanding. Hueman also illustrates how traditional self-tracking approaches can be extended through thoughtful integration of visual aesthetics, time-based logging, and adaptive technologies. Our study offers insights into the potential of color-adaptive, personalized systems for emotional support. Future work may explore scaling such systems to larger populations, integrating multimodal data sources, and refining adaptive algorithms to more effectively support a wider range of emotional states. Ultimately, Hueman demonstrates that personal informatics tools can move beyond static tracking to become dynamic, expressive, and supportive companions for emotional well-being.

9 GenAI Usage Disclosure

Generative AI tools (ChatGPT, Claude, DeepSeek) were used to support the writing and debugging of code for the Hueman application.

References

- [1] Parastoo Abtahi, Victoria Ding, Anna C. Yang, Tommy Bruzzese, Alyssa B. Romanos, Elizabeth L. Murnane, Sean Follmer, and James A. Landay. 2020. Understanding physical practices and the role of technology in manual self-tracking. *Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies* 4, 4 (2020), 1–24. doi:10.1145/3432236
- [2] Francis M. Adams and Charles E. Osgood. 1973. A Cross-Cultural Study of the Affective Meanings of Color. *Journal of Cross-Cultural Psychology* 4, 2 (1973), 135–156. doi:10.1177/002202217300400201
- [3] Adobe Inc. 2025. Adobe Color (Adobe Express). <https://color.adobe.com/>. Accessed: 2025-10-06.
- [4] Mina Alipour, Ramin S. S., M. Ali Babar, and R. S. 2023. Emoticontrol: Emotions-based Control of User-Interfaces Adaptations. *Proceedings of the ACM on Human-Computer Interaction* 7, EICS (2023), 1–29. doi:10.1145/3593227
- [5] Bon Adriel Aseniero, Charles Perin, Wesley Willett, Anthony Tang, and Sheelagh Carpendale. 2020. Activity River: Visualizing Planned and Logged Personal Activities for Reflection. In *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI '20)*. ACM, 1–13. doi:10.1145/3313831.3376442
- [6] A. Ayobi. 2020. A Customisable and Pictorial Self-Tracking App to Support Agency in Multiple Sclerosis Self-Care. *Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems 2020*, 1 (2020), 1–13. doi:10.1145/3313831.3376809
- [7] A. Ayobi, T. Sonne, P. Marshall, and A. L. Cox. 2018. Flexible and Mindful Self-Tracking: Design Implications from Paper Bullet Journals. In *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems*. Association for Computing Machinery (ACM), 1–14. doi:10.1145/3173574.3173602
- [8] Ali Azer. 2019. The sun and how do we feel about the color yellow? Methodological concerns. *Journal of Environmental Psychology* 66 (2019), 101350. doi:10.1016/j.jenvp.2019.101350
- [9] M. Barker-Canler. 2024. Flexible Minimalist Self-Tracking to Support Individual Reflection. *Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems* 2024, 1 (2024), 1–12. doi:10.1145/3660339
- [10] Scott Bateman, Regan L. Mandryk, Carl Gutwin, Aaron Genest, David McDine, and Christopher Brooks. 2010. Useful Junk?: The Effects of Visual Embellishment on Comprehension and Memorability of Charts. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '10)*. ACM, Atlanta, Georgia, USA, 2573–2582. doi:10.1145/175326.1753716
- [11] Eric P. S. Baumer. 2015. Reflective Informatics: Conceptual Dimensions for Designing Technologies of Reflection. In *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI '15)*. ACM, Seoul, Republic of Korea, 585–594. doi:10.1145/2702123.2702234
- [12] Dermot Browne, Peter Totterdell, and Mike Norman. 1990. *Adaptive User Interfaces*. Academic Press, London. Also available as an eBook ISBN 978-1483294254.
- [13] Rafael A. Calvo and Dorian Peters. 2012. Positive computing: technology for a wiser world. *Interactions* 19, 4 (2012), 33–37. doi:10.1145/2212877.2212886
- [14] Nick Cawthon and Andrew Vande Moere. 2007. The Effect of Aesthetic on the Usability of Data Visualization. In *Proceedings of the 11th International Conference on Information Visualization (IV '07)*. IEEE, 6–11. doi:10.1109/IV.2007.60
- [15] Kendra Cherry. 2023. The Psychology of the Color Yellow. <https://www.verywellmind.com/the-color-psychology-of-yellow-2795823> Accessed: 2025-10-05.
- [16] China National Tourist Office. 2020. Peking Opera Facial Masks. <http://cnto.org.uk/the-culture4-2/beijing-opera.html>

1093 [17] Eun Kyoung Choe, Bongshin Lee, Matthew Kay, Wanda Pratt, and Julie A. Kientz. 2015. SleepTight: Low-burden, self-monitoring technology
 1094 for capturing and reflecting on sleep behaviors. In *Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing
 1095 (UbiComp '15)*. Association for Computing Machinery (ACM), New York, NY, USA, 121–132. doi:10.1145/2750858.2804266

1096 [18] Xerox Corporation. 2020. International Color Guide: Cultural Associations. <https://www.xerox.com/en-us/small-business/tips/color-guide>
 1097 Accessed: 2025-10-05.

1098 [19] Katie Davis, Rotem Landesman, Jina Yoon, JaeWon Kim, Daniela E. Munoz Lopez, Lucia Magis-Weinberg, and Alexis Hiniker. 2025. How Teens
 1099 Use Instagram To Regulate Their Emotions. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems (CHI '25)*. ACM.
 1100 doi:10.1145/3706598.3713844

1101 [20] Pete Docter. 2015. Inside Out. Film.

1102 [21] Malin Eiband, Hanna Schneider, Mark Bilandzic, Julian Fazekas-Con, Mareike Haug, and Heinrich Hussmann. 2018. Bringing Transparency Design
 1103 into Practice. In *Proceedings of the 23rd International Conference on Intelligent User Interfaces (IUI '18)*. Association for Computing Machinery, Tokyo,
 1104 Japan, 211–223. doi:10.1145/3172944.3172961

1105 [22] Andrew J. Elliot. 2014. Color and psychological functioning: a review of theoretical and empirical work. *Frontiers in Psychology* 5 (2014), 978.
 1106 doi:10.3389/fpsyg.2014.00978

1107 [23] Chloe Fan, Jodi Forlizzi, and Anind K. Dey. 2012. A Spark of Activity: Exploring Informative Art as Visualization for Physical Activity. In *Proceedings
 1108 of the 2012 ACM Conference on Ubiquitous Computing (UbiComp '12)*. ACM, Pittsburgh, Pennsylvania, 81–84. doi:10.1145/2370216.2370229

1109 [24] Maria A. Ferrario, Will Simm, Adrian Grdinac, Stephen Forshaw, Marcia T. Smith, Thomas Lee, Ian Smith, and Jon Whittle. 2017. Computing and
 1110 mental health: Intentionality and reflection at the click of a button. In *Proceedings of the 11th EAI International Conference on Pervasive Computing
 Technologies for Healthcare (PervasiveHealth '17)*. Association for Computing Machinery (ACM), New York, NY, USA, 1–10. doi:10.1145/3154862.
 3154877

1111 [25] Gerhard Fischer. 2001. User Modeling in Human–Computer Interaction. In *User Modeling 2001*. Springer, 5–19.

1112 [26] Google LLC. 2024. Google Calendar. <https://calendar.google.com>. Accessed: 2025-10-06.

1113 [27] Francesco Gullà, Luca Cavalieri, Stefano Ceccacci, Roberto Bevilacqua, and Riccardo Menghi. 2015. Design Adaptable and Adaptive User Interfaces:
 1114 A Method to Manage the Information. In *Communications in Computer and Information Science*. Vol. 552. Springer, 1–14. doi:10.1007/978-3-319-
 1115 19889-7_1

1116 [28] Mitsuhiro Hanada. 2018. Correspondence Analysis of Color–Emotion Associations. *Color Research Application* 43, 2 (2018), 224–237. doi:10.1002/
 1117 col.22171

1118 [29] Daniel Harrison, Paul Marshall, Nadia Bianchi-Berthouze, and Jon Bird. 2015. Activity tracking: Barriers, workarounds and customisation. In
 1119 *Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp '15)*. Association for Computing Machinery
 1120 (ACM), New York, NY, USA, 617–621. doi:10.1145/2750858.2805832

1121 [30] Dandan Huang, Melanie Tory, Bon Adriel Aseniero, Lyn Bartram, Scott Bateman, Sheelagh Carpendale, Anthony Tang, and Rob Woodbury.
 1122 2015. Personal Visualization and Personal Visual Analytics. *IEEE Transactions on Visualization and Computer Graphics* 21, 3 (2015), 420–433.
 1123 doi:10.1109/TVCG.2014.2359887

1124 [31] Dandan Huang, Melanie Tory, and Lyn Bartram. 2016. A Field Study of OnCalendar Visualizations. In *Proceedings of Graphics Interface 2016 (GI '16)*.
 1125 Canadian Human-Computer Communications Society, Victoria, British Columbia, Canada, 1–8. <https://dl.acm.org/doi/10.5555/2930668.2930673>

1126 [32] Smithsonian Institution. 2023. Red. <https://asia.si.edu/explore-art-culture/art-stories/colors/red/> Accessed: 2025-10-05.

1127 [33] Domicile Jonauskaitė, Ahmad Abu-Akel, Nele Dael, Daniel Oberfeld, Ahmed M. Abdel-Khalek, Abdulrahman S. Al-Rasheed, Jean-Philippe Antonietti,
 1128 Victoria Bogushevskaya, Amer Chamseddine, Eka Chkonia, Violeta Corona, Eduardo Fonseca-Pedrero, Yulia A. Gruber, Gina Grimshaw, Aya Ahmed
 1129 Hasan, Jelena Havelka, Marco Hirnstein, Bodil S. A. Karlsson, Emmanuel Laurent, Matti Lindeman, Lutz Marquardt, Pascal Mefoh, Maria Papadatou-
 1130 Pastou, Ana Pérez-Albéniz, Niloofar Pouyan, Mariam Roinishvili, Lidiya Romanyuk, Antonio Salgado Montej, Yona Schrag, Aygul Sultanova,
 1131 Meelis Uusküla, Satu Vainio, Grzegorz Wasowicz, Slobodan Zdravković, Min Zhang, and Christian Mohr. 2020. Universal patterns in color-emotion
 1132 associations are further shaped by linguistic and geographic proximity. *Psychological Science* 31, 10 (2020), 1245–1260. doi:10.1177/0956797620948810

1133 [34] Bullet Journal. 2017. Year in Pixels. <https://bulletjournal.com/blogs/bulletjournalist/deep-dive-year-in-pixels>. Accessed: 2025-10-04.

1134 [35] Claudia Kawai, Yang Zhang, Gáspár Lukács, Wenyi Chu, Chaoyi Zheng, Cijun Gao, Davood Gozli, Yonghui Wang, and Ulrich Ansorge. 2023. The good,
 1135 the bad, and the red: implicit color-valence associations across cultures. *Psychological Research* 87, 3 (2023), 704–724. doi:10.1007/s00426-022-01697-5

1136 [36] Neslihan Kaya and Helen H. Epps. 2004. Relationship between Color and Emotion: A Study of College Students. *College Student Journal* 38, 3 (2004),
 1137 396–405.

1138 [37] Nanum Kim, Sangsu Jang, Hansol Kim, Dayoung Shin, and Young-Woo Park. 2025. Lino: An Interactive System for Daily Mood Recordings
 1139 Supporting Meaning-Making through Single Stroke Drawing Approach. In *Proceedings of the 2025 ACM Designing Interactive Systems Conference
 1140 (DIS '25)*. ACM, 2255–2269. doi:10.1145/3715336.3735675

1141 [38] Taewan Kim, Haesoo Kim, Ha Yeon Lee, Hwarang Goh, Shakhboz Abdigapporov, Mingon Jeong, Hyunsung Cho, Kyungsik Han, Youngtae Noh,
 1142 Sung-Ju Lee, and Hwajung Hong. 2022. Prediction for Retrospection: Integrating Algorithmic Stress Prediction into Personal Informatics Systems
 1143 for College Students' Mental Health. In *Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems*. ACM, New Orleans, LA,
 1144 USA, 1–20. doi:10.1145/3491102.3517701

1145 [39] Taewan Kim, Donghoon Shin, Young-Ho Kim, and Hwajung Hong. 2024. Momentary Stressor Logging and Reflective Visualizations. In *Proceedings
 1146 of the 2024 CHI Conference on Human Factors in Computing Systems (CHI '24)*. ACM, 1046–1059. doi:10.1145/3613904.3642662

1145 [40] Kristin Kleinspehn, Marten Schellenberg, and Florian Alt. 2021. Understanding People's Use of and Perspectives on Mood-Tracking Apps. *JMIR Mental Health* 8, 7 (2021), e28346. doi:10.2196/28346

1146 [41] Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. 2015. Principles of Explanatory Debugging to Personalize Interactive

1147 Machine Learning. In *Proceedings of the 20th International Conference on Intelligent User Interfaces (IUI '15)*. Association for Computing Machinery, Atlanta, GA, USA, 126–137. doi:10.1145/2678025.2701399

1148 [42] Radha Kumar, Viral Niraj Doshi, Sherry X. Chen, Avinash Ajit Nargund, Tobias Höllerer, and Misha Sra. 2023. EChat: An Emotion-Aware

1149 Adaptive UI for a Messaging App. In *Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology (UIST '23)*. ACM.

1150 doi:10.1145/3586182.3616698

1151 [43] Andrei Kushkin, Alberto Giordano, Amy Griffin, and Alexander Savelyev. 2023. Cognitively Congruent Color Palettes for Mapping Spatial Emotional

1152 Data. *Cartographic Perspectives* 102 (2023), 1–29. doi:10.14714/CP102.1821

1153 [44] D. Lakens et al. 2012. But for the Bad, There Would Not Be Good: Grounding Valence in Brightness Through Shared Relational Structures. *Journal*

1154 *of Experimental Psychology: General* 141, 4 (2012), 706–724. doi:10.1037/a0026468

1155 [45] Kwangyoung Lee and Hwajung Hong. 2017. Designing for Self-Tracking of Emotion and Experience with Tangible Modality. In *Proceedings of the*

1156 *2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems*. ACM, Denver, CO, USA, 3057–3064. doi:10.1145/3027063.3053221

1157 [46] Ian Li. 2006. MoodJam. <https://www.ianli.com/projects/moodjam.html> Accessed: 2025-10-05.

1158 [47] Isabel Li, Ace S. Chen, Eric Rawi, Shm Garanganao Almeda, Bjoern Hartmann, and Jingyi Li. 2025. Reimagining Misuse as Creative Practice:

1159 Impressions and Implications of Usage Norms on Digital Artists. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems*

1160 (*CHI '25*). ACM. doi:10.1145/3706598.3714068

1161 [48] Ian Li, Anind K. Dey, and Jodi Forlizzi. 2010. A Stage-Based Model of Personal Informatics Systems. In *Proceedings of the SIGCHI Conference on*

1162 *Human Factors in Computing Systems (CHI '10)*. ACM, 557–566. doi:10.1145/1753326.1753409

1163 [49] Ian Li, Anind K. Dey, and Jodi Forlizzi. 2011. GoSlow: Designing for Slowness, Reflection, and Solitude. In *Proceedings of the 2011 CHI Conference on*

1164 *Human Factors in Computing Systems (CHI '11)*. ACM, 2661–2670. doi:10.1145/1978942.1979332

1165 [50] Ian Li, Anind K. Dey, and Jodi Forlizzi. 2011. Understanding My Data, Myself: Supporting Self-Reflection with Ubicomp Technologies. In *Proceedings*

1166 *of the 13th International Conference on Ubiquitous Computing (UbiComp '11)*. ACM, Beijing, China, 405–414. doi:10.1145/2030112.2030166

1167 [51] Jia Zheng Lim, James Mountstephens, and Jason Teo. 2020. Emotion Recognition Using Eye-Tracking: Taxonomy, Review and Current Challenges.

1168 *Sensors* 20, 8 (2020), 2384. doi:10.3390/s20082384

1169 [52] Katherine Lin, Juna Kawai-Yue, Adira Sklar, Lucy Hecht, Sarah Sterman, and Tiffany Tseng. 2025. Crafting a personal journaling practice: Negotiating

1170 ecosystems of materials, personal context, and community in analog journaling. In *Proceedings of the 2025 CHI Conference on Human Factors in*

1171 *Computing Systems*. 1–13. doi:10.1145/3589248.3591181

1172 [53] Oura Health Ltd. 2025. Oura Ring. <https://ouraring.com>.

1173 [54] Giorgia Lupi and Stefanie Posavec. 2016. *Dear Data*. Princeton Architectural Press, New York, NY. <https://www.dear-data.com/>

1174 [55] Kelsey Mann. 2024. Inside Out 2. Film.

1175 [56] John D. Mayer, David R. Caruso, and Peter Salovey. 1999. Emotional intelligence meets traditional standards for an intelligence. *Intelligence* 27, 4

1176 (1999), 267–298. doi:10.1016/S0160-2896(99)00016-1

1177 [57] Nesrine Mezhoudi. 2013. User Interface Adaptation based on User Feedback and Machine Learning. In *IUI Companion*. ACM, 25–28. doi:10.1145/

1178 2451176.2451184

1179 [58] Microsoft Corporation. 2024. Outlook Calendar. <https://outlook.live.com/calendar/>. Accessed: 2025-10-06.

1180 [59] Ali Mollahosseini, Behzad Hasani, and Mohammad H. Mahoor. 2017. AffectNet: A Database for Facial Expression, Valence, and Arousal Computing

1181 in the Wild. In *IEEE Transactions on Affective Computing*, Vol. 10. 18–31. doi:10.1109/TAFFC.2017.2740920

1182 [60] Leonhard Oberascher and Michael Gallmetzer. 2003. Colour and Emotion. *Psychology of Aesthetics, Creativity, and the Arts* (2003).

1183 [61] Fredrik Ohlin and Carl Magnus Olsson. 2015. Intelligent Computing in Personal Informatics: Key Design Considerations. In *Proceedings of*

1184 *the 20th International Conference on Intelligent User Interfaces (IUI '15)*. Association for Computing Machinery, Atlanta, Georgia, USA, 263–274.

1185 doi:10.1145/2678025.2701378

1186 [62] Liang Ou, Stephen Luo, and Angela Woodcock. 2010. A study of color emotion and color preference. Part I: Hue, lightness, and chroma. *Color*

1187 *Research & Application* 35, 1 (2010), 50–64. doi:10.1002/col.20510

1188 [63] Stephen E. Palmer and Karen J. Schloss. 2010. An ecological valence theory of human color preference. *Proceedings of the National Academy of*

1189 *Sciences* 107, 19 (2010), 8877–8882. doi:10.1073/pnas.0906172107

1190 [64] Youngsoon Park and Denise A. Guerin. 2002. Meaning and Preference of Interior Color Palettes Among Four Cultures. *Journal of Interior Design* 28,

1191 1 (2002), 27–39. doi:10.1111/j.1939-1668.2002.tb00370.x

1192 [65] Zachary Pousman, John Stasko, and Michael Mateas. 2007. Casual Information Visualization: Depictions of Data in Everyday Life. *IEEE Transactions*

1193 *on Visualization and Computer Graphics* 13, 6 (2007), 1145–1152. doi:10.1109/TVCG.2007.70515

1194 [66] James A. Russell. 1980. A Circumplex Model of Affect. *Journal of Personality and Social Psychology* 39, 6 (1980), 1161–1178. doi:10.1037/h0077714

1195 [67] Diana Santos, Alberto Simões, and Cristina Mota. 2022. Broad Coverage Emotion Annotation. *Language Resources & Evaluation* 56, 4 (2022), 857–879.

1196 doi:10.1007/s10579-021-09565-1

1197 [68] Stephen M. Schueller, Martha Neary, Jocelyn Lai, and Daniel A. Epstein. 2021. Understanding People's Use of and Perspectives on Mood-Tracking

1198 Apps: Interview Study. *JMIR Mental Health* 8, 8 (2021), e29368. doi:10.2196/29368

1197 [69] Donald A. Schön. 1983. *The Reflective Practitioner: How Professionals Think in Action*. Routledge.

1198 [70] Sachin Shah, J. Narasimha Teja, and Samit Bhattacharya. 2015. Towards affective touch interaction: predicting mobile user emotion from finger
1199 strokes. *Journal of Interaction Science* 3, 1 (2015), 6. doi:10.1186/s40166-015-0013-z

1200 [71] Aaron Springer and Steve Whittaker. 2019. Progressive Disclosure: Empirically Motivated Approaches to Designing Effective Transparency. In
1201 *Proceedings of the 24th International Conference on Intelligent User Interfaces (IUI '19)*. Association for Computing Machinery, Marina del Rey, CA,
1202 USA, 107–118. doi:10.1145/3301275.3302322

1203 [72] The How We Feel Project, Inc. 2025. How We Feel. <https://howwefeel.org/> Accessed: 2025-10-04.

1204 [73] P. Valdez and A. Mehrabian. 1994. Effects of color on emotions. *Journal of Experimental Psychology: General* 123, 4 (1994), 394–409. doi:10.1037/0096-
3445.123.4.394

1205 [74] Shimin Wang, Yuzuru Tanahashi, Nick Leaf, and Kwan-Liu Ma. 2015. Design and Effects of Personal Visualizations. *IEEE Computer Graphics and*
1206 *Applications* 35, 4 (2015), 58–66. doi:10.1109/MCG.2015.74

1207 [75] Amy Beth Warriner, Victor Kuperman, and Marc Brysbaert. 2013. Norms of valence, arousal, and dominance for 13,915 English lemmas. *Behavior*
1208 *Research Methods* 45, 4 (2013), 1191–1207. doi:10.3758/s13428-012-0314-x

1209 [76] L. Wilms and D. Oberfeld. 2018. Color and Emotion: Effects of Hue, Saturation, and Brightness. *Psychological Research* 82, 6 (2018), 1354–1367.
1210 doi:10.1007/s00426-017-0880-8

1211 [77] Gary Wolf and Kevin Kelly. 2007. The Quantified Self. *Wired* (Oct. 2007). <https://www.wired.com/2007/10/ff-quantifiedself/>

1212 [78] Sandy Wolfson and Gill Case. 2000. The Effects of Sound and Colour on Responses to a Computer Game. In *Proceedings of [Conference Name, if*
1213 *available]*.

1214 [79] L. Xu. 2023. Color2Vec: Web-Based Modeling of Word-Color Association with Natural Language Processing. *ACM Transactions on Computer-Human*
1215 *Interaction (TOCHI)* 30, 4 (2023), 1–29. doi:10.1145/3571816

1216 [80] Tianyi Xu, Sarah Cook, Bryan Semaan, and Stephen A. Volda. 2025. Expression-in-action and Expression-on-action: A Systematic Review of
1217 Mediums for Expression in Mental Health. In *Proceedings of the 2025 ACM SIGCHI Conference on Human Factors in Computing Systems (CHI '25)*.
1218 Association for Computing Machinery, 1–20. doi:10.1145/3706598.3713669

1219 [81] Zhihong Zeng, Maja Pantic, Glenn I. Roisman, and Thomas S. Huang. 2009. A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous
1220 Expressions. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 31, 1 (2009), 39–58. doi:10.1109/TPAMI.2008.52

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247